Astronomical Concepts – Week 8 (Final)

For this final week of the course the focus was cosmology.

capture

The main topics of learning we looked at included:

  • Galaxies
  • Quasars
  • Dark matter
  • Dark energy
  • The Big Bang Theory
  • Gravity
  • Expansion of the universe and inflation

Galaxies

There are three main types of galaxy: spiral, elliptical and irregular. Our Milky Way galaxy is a spiral type and contains billions of stars. It is about 100,000 light years in diameter and our solar system is located in the suburbs of the galaxy. At the centre of our galaxy, and also at the centre of most is a super massive black hole. Our nearest galaxy is called Andromeda and we are on a collision course with this galaxy and we will collide in about 4 billion years. Even though the universe is expanding, space is literally stretching like the surface of a balloon being blown up, our galaxies are locked in a gravitational embrace.

Our galaxy is within a local group of galaxies that also contains Andromeda. This local group was first recognized by Edwin Hubble. Even though our local group is a closely packed group of galaxies the distances between the galaxies is enormous. If we travelled at 17.3 km/s it would take us 40 billion years to get to the nearest galaxy (Andromeda). If we could travel at light speed it would only take us 2.3 million years, but this is not possible… yet!

303449109_1280x720

Paul showed some stunning images during the evening and some are shown below.

The pinkish image is of the large magellanic cloud. It is nearly 200,000 light years from Earth and is a satellite galaxy of the Milky Way. It is a highly active star forming vast cloud of gas. Gas slowly collapses to form new stars which light up the gas around them.

Inflation

This theory proposes a period of very fast expansion of the early universe. It offers solutions to some of the problems of the big bang theory. Inflation is said to have increased the size of the universe by a factor of 10^26 in only a fraction of a second. But, it also has problems! Here is why thanks to New Scientist.

Screen Shot 2016-12-02 at 12.28.54 am.png

The cosmic microwave background was another featured topic tonight and here it is.IMG_2857

This image shows the universe in microwaves. It shows the temperature fluctuations of the early, early universe, about ~300,000 years after the big bang. The image is a record of a time when the early universe cooled to around 3,000 Celsius and protons and electrons were able to form atoms. As a result photons were able to escape and travel freely around the universe. The CMB was discovered in 1965 by Penzias and Wilson and they hared the Nobel prize in physics for this discovery in 1978. Today the CMB is very cold, just 2.725 degrees above absolute zero which means the radiation shines in the microwave part of the electromagnetic spectrum and is invisible to the naked eye. However, we know it is there, everywhere in the sky and if we could see it ourselves we would see the entire sky glow with a very uniform brightness in every direction. The temperature is uniform to better than 1 part in a thousand. This is the main reason to why scientists think it is the remnants from the big bang, because what other event could have been the cause. By studying the CMB further we can learn about the conditions of the early universe in great detail.

Dark matter and dark energy

These theories are still a mystery. We know a lot about our universe and one thing we know is that about 0.4% of the mass of the universe is made of stars, dark matter is about 27%, dark energy is about 68% and the remainder is gas, mainly hydrogen. Here, again thanks to New Scientist are dark matter and dark energy explained in more detail.

screen-shot-2016-12-02-at-12-35-48-amscreen-shot-2016-12-02-at-12-35-56-am

There, described beautifully, thank you New Scientist!

Limitations of the big bang theory

capture

http://wmap.gsfc.nasa.gov/universe/bb_cosmo_infl.html

The fate of the universe! There are two theories: endless expansion and the big crunch. If the universe continues to expand forever then it will also continue to cool down until it is unable to to sustain life. On the other hand, if gravity wins and takes back control over expansion and there is sufficient mass to be able to do this then the universe will start to collapse back in on itself – the big crunch! Recent evidence suggests the universe is still expanding and at an increasing rate. This could be the dark energy mentioned earlier.

Paul left us where we started 8 weeks ago with the Hubble Deep Field image.

deep-field

This is an image of a tiny patch of the night sky that was believed to be blank, empty space. The Hubble Telescope focused on this tiny patch of sky and took a long exposure image over 10 days, and this was the result. The image shows over 300 galaxies, everything in the image is a galaxy and some of the farthest and oldest ever seen. The image is very important to scientists and researchers to see how the universe has developed and changed over time. it is one of the most important images ever taken!

This was an amazing course packed full of super-interesting information about our universe, solar system, stars, planets and the theories that shape our lives. I recommend it to everyone! Follow the link to sign up for the next instalment.

https://maas.museum/event/2017-adult-astronomy-courses/

Massive thanks go to Dr Paul Payne for your amazing lectures, graphics, stories, jokes, cups of tea and biscuits!

Astronomical Concepts – Week 7

This week – special relativity.

what-is-einsteins-general-relativity-1448300136282-master495-v2.gif

We started with the two main axioms of special relativity:

  1. The laws of physics are the same in all inertial frames of reference

  2. The speed of light is constant (299,792,458 m/s)

Tonight we had to imagine we were floating through space in a spaceship. Are we stationary or are we moving? Are the stars stationary or are they moving? Relative to us of course. With the window blinds down on our spacecraft we have no way of knowing if we are moving or not, there is no experiment we can do to find out.

However, an observer on another spacecraft has a different point of view. On our spacecraft if we bounce a ball we see it go down and then up in a straight line. If an observer on another spacecraft could see us bounce a ball as we drift past them in our spacecraft, and they are stationary they get a different point of view of the ball.

timedilation

The definition of ‘now’

We accept that certain events that happen can be simultaneous. But how can we determine that two events that happen in different locations are simultaneous?

On Earth we carry clocks and they are synchronised, we accept that two events that happen happened at the same time. What we have to accept is that clocks, time, is influenced by motion. Einstein realised that space contracts and time dilates through motion. A moving clock runs more slowly as its velocity increases, until, at the speed of it stops running all together. So having clocks that run at different rates leads to strange effects – simultaneity is relative. Whether or not two events are simultaneous depend on your frame of reference.

relativity_time_dilation.jpg

So, one person’s definition of time is not the same as another’s. Also, the faster you travel the slower you age. At speeds close to c the effects are huge, at smaller speeds less so.

Further, the faster you move the more you contract. Close to c the amount of contraction is great, at slower speeds less so, tiny amounts. An observer at rest relative to the moving object would observe the moving object to be shorter in length of motion. As the object increases in speed and gets close to c the object would appear much shorter.

24RELATIVITYJP-master675.jpg

Special relativity is a work of pure genius by Albert Einstein. Our session tonight was an introduction, a mere taster of the theory and we were only able to scratch the surface. I loved the session, the concepts are so interesting, if a little hard to get your head around. Much more information about special relativity can be found here.

So, the only true constant is the speed of light. The faster you travel the more time slows down for you and the more you contract.

With the invention of atomic clocks we can now measure time to billionths of a second and can be accurate to within one second over 3.7 billion years. Einstein said that realising gravity and acceleration were the same thing was “the happiest thought of my life”.

Astronomical Concepts – Week 5

The main topic this week was the Sun.

Here are a few facts about the sun:

  • It is a hot ball of glowing gas
  • It is a yellow dwarf, main sequence star
  • Approx. 150 million km from Earth (this distance is known as 1 astronomical unit (AU))
  • Formed 4.5 billion years ago
  • Formed from a giant cloud of spinning and collapsing gas
  • Light from the sun takes 8 minutes and 20 seconds to reach our eyes
  • Sunlight takes 170,000 years to get from the core to the sun’s surface

Composition:

  • 91% Hydrogen
  • 8.9% Helium
  • 0.1% other elements such as oxygen, carbon, nitrogen, silicon, magnesium, neon, iron

The theory of how our sun and planets formed is called the Solar Nebula theory. Our solar system formed from the gravitational collapse of a large cloud of gas, 98% hydrogen and helium. As it collapses it spins and the centre becomes hot, where the protosun is located. It is colder on the outside of the spinning disc. As the cloud continues to collapse conservation of energy, momentum and angular momentum flatten it out. Further in towards the centre the resulting planets are warmer and further away the planets are colder.

Screen Shot 2016-11-23 at 8.40.51 pm.png

The image below shows the structure of the sun,

sun_structure

The temperature at the core is around 15 million celsius. The surface of the sun is around 5,500 celsius. In its core the sun is burning hydrogen and helium via nuclear fusion, this is what stars do and it is why they shine. The sun contains about 99.9% mass of the entire solar system and utterly dominates the gravity of the orbiting planets.

17a.png

The sun also emits a solar wind, charged particles flowing outwards from the sun that causes space weather and on Earth causes the northern lights.

Our sun has been around for over 4.5 billion years but will not live forever. The graphic below indicates the life cycle of our sun and in about 5 billion years time something rather dramatic will happen!

lifecycle-of-the-sun

So, in around 5 billion years time the sun will effectively run out of gas. The sun will begin to puff up in size and quite a lot bigger, around 30 times great in size, the Earth will literally be inside the sun. It will become a red giant. A red giant is red because its exterior has cooled from 9,000 to 3,000 Fahrenheit. This red giant stage will last for another 2 billion years. Eventually the sun will start to contract and become a bit larger than its original radius but give off 10 times as much energy than at present. This phase will last only 500 million years. Our sun will become a white dwarf and then a black dwarf.

Screen Shot 2016-11-23 at 7.14.05 pm.png

The left hand side is for stars like the sun, the right hand side is for stars that are much bigger than our sun.

We were lucky enough to be able to observe the sun from one of the observatory’s telescopes and through a h-alpha filter. It looked something like this,

sunha

This means to block out most types of light and view just a very narrow bandwidth focused on the hydrogen alpha spectral line. It means it is safe to observe the sun. The light occurs when a hydrogen electron falls from the third to the second lowest energy level. It is useful for observing prominences.

Did you know… NASA has a spacecraft orbiting the sun called the Solar Heliospheric Observatory (SOHO). The objective of the mission is to observe all aspects of the sun. It was launched in 1995 and is still going strong now. You can view the latest images of the sun on its webpage here. The image below is the sun taken with extreme ultraviolet imaging telescope (EIT 195) – 1.5 million kelvin.

20161121_0113_eit195_512.jpg

Anyway, there is so much information online about the sun and it is so interesting. Keep reading and learning!

Next week …. more about stars!

Astronomical Concepts – Week 2

The main topics this week were the solar system, gravity and the tidal effect. I have previously written on my blog about the solar system so for this entry I will just write about gravity and the tidal effect.

The two main theories of gravity come from Isaac Newton and Albert Einstein, both are used today, both are brilliant and vastly different. Gravity is one of the 4 main forces of nature, it works on grand scales, the great sculpture of the universe. Our Milky Way galaxy is locked in a gravitational embrace with Andromeda and in a few billion years the two galaxies will collide, just one example of the power of gravity. It holds galaxies together over billions of kilometres.

Gravity is the weakest of the four forces, yet it is so influential. The four fundamental forces of nature are gravity, weak, strong and electromagnetic. Well gravity is by far the weakest, certainly it is very weak here on Earth, but out there in the universe it is quite different. Stand on a planet more massive than ours and you would quickly notice the immense power of gravity. Stand on a neutron star and you would be ripped apart very quickly.

hudf.jpg

Newton realised that when objects fall to the Earth their must be a force acting on the object, reaching up and pulling it down. He stated that the force of gravity is always attractive, and affects everything with mass. Newton was also able to show that objects with different masses fall at the same rate because an object’s acceleration due to the force of gravity depends only on the mass of the object pulling it, such as a planet.

Newton’s cannon was a thought experiment that demonstrated his theory further. He imagined firing a cannon ball from the top of a mountain. Without the force of gravity acting on the cannon ball it would simply travel in a straight line. If gravity is present then the cannon ball’s path will depend on its speed. If it is slow moving it will fall down to the surface, if it is travelling fast enough it will go into orbit around the planet and if it reaches the escape velocity it will leave the orbit all togehter.

newton-cannon

Einstein has a different approach. Einstein says that gravity is not a force but rather a property of space-time geometry. Objects in space, such as planets around a star are all attempting to travel in a straight line through space but that the curvature of the fabric of space means objects are constantly falling towards the mass exerting gravity. Einstein says when you are falling around an object you have cancelled out gravity. Astronauts on the International Space Station are weightless because they are continuously falling to Earth. There is gravity where they are, they are travelling at a speed to stay in orbit around the Earth. The astronauts are continually falling to the Earth but they never reach it, that is why they’re weightless. Being weightless means you are in free fall. When you are in free fall you cancel out gravity. Einstein’s elevator thought experiment explains his theory in more detail, read about it here.

rocket_free

Tidal forces are significant across our solar system. Here on Earth we experience tidal effects thanks to the moon. The Earth experiences two high tides, one on the side of the Earth closest to the moon as the moon pulls the water towards it and on the opposite side as the moon pulls the Earth away from it.

Screen Shot 2016-11-04 at 10.25.45 pm.png

An extreme case of tidal forces in the solar system is the heating of the moon Io around Jupiter. Jupiter is very massive so the effects on Io are huge,  Jupiter pulls Io inwards and the other moons away from Io pull it the other way, causing Io to distort in shape. This constant change results in lots of friction which in turn drives strong volcanic activity on the surface of Io. Io is the most volcanically active body in the solar system and its surface is constantly changing with large dark spots on the surface caused by collapsed volcanoes.

Our moon is also tidally locked, meaning we see the same side of the moon all the time. It spins once on its axis as long as it takes it to orbit the Earth once, so we always see the same face. The constant tugging from the Earth on the moon has caused this locking to happen.

So what is gravity?

orbits_gravity_well-en

Can’t wait for week 3 – the outer planets.

Astronomical Concepts – Week 1 Introduction

Thursday 13th October was the first week of my new astronomy course at Sydney Observatory. Like the first course I attended earlier this year it is presented by Dr Paul Payne. This course aims to expand on the first and build on some of the main concepts of astronomy, including the solar system, gravity, the theory of relativity, the Sun, stars and quantum theory.

This first week was an introduction to the course and focused on some important concepts: light, gas, nebula, the speed of light, atoms (particularly hydrogen), electrical fields, the electromagnetic spectrum and more. It certainly was a packed 2 and a half hours!

em_spectrum

Before we left we had time to observe the night sky through the observatory’s over 140 year old telescope, the oldest in Australia, to see great views of the surface of the Moon and Saturn. The views looked similar to the images below:

This was a great introduction to the course. As usual we had our lecture in the basement theatre and were treated to Paul’s 3D graphics and animations to help illustrate the concepts further. I left with a deeper knowledge of light, in particular how influential the wavelength is. Paul showed us many images of nebulae, including the famous Crab nebula, seen below:

crab-neb

This is probably the most familiar shot of the nebula showing the bright blue, green and orange colours. The image below shows the Crab nebula in a variety of wavelengths. By looking at the nebula in different wavelengths it tells astronomers different information about the star.

Crab_Nebula_in_Multiple_Wavelengths.png

X-Rays for example are collected by the NASA Chandra space telescope, amongst other devices. Many things in space emit x-rays, such as black holes, neutron stars, binary star systems, supernova remnants, stars, the Sun and even some comets. Because X-Rays are absorbed by Earth’s atmosphere the Chandra telescope must orbit above it to an altitude of 139,000km. X-Rays are produced in the universe when matter is heated to millions of degrees. These temperatures occur when high magnetic fields, or extreme gravity, or explosive forces, hold sway. Chandra can also trace hot gas from an exploding star or even a black hole. Chandra can help to define the hot , turbulent regions of space to help us understand the origin, evolution and density of the universe. The image of the Crab above in x-ray shows blue colour and in the centre a pulsar can be seen. The star was first discovered in 1942 by Rudolf Minkowski and then later in 1968 the star was found to be emitting its radiation in rapid pulses, becoming one of the first pulsars to be discovered.

This was a great start to the course, highly engaging and interesting as always and I can’t wait for next week!

Exploring the Heavens – Final Week

For the final class the topic was Telescopes. We covered the history of telescopes and the different types. We were meant to go outside and use some telescopes, but due to the heavy Sydney rain this was not possible tonight. The advantage being we got to stay inside out of the cold and were able to ask Dr Payne more questions and learn more about astronomy, including about Edwin Hubble and the Hubble telescope, below:

maxresdefault

Telescopes come in many different forms including optical, radio, microwave, infrared, ultraviolet and x-ray. Telescopes are all about extending the capability of the first astronomical detector: the naked eye. The light we capture from telescopes is vital for us to explore and understand the universe.

The telescope was developed in the 17th century and was a Flemish invention. One of the first people to turn the telescope towards the stars was Galileo and in his life he built many telescopes. He made many discoveries, including:

  • The features of the moon such as valleys and craters
  • Jupiter’s moons which meant not everything circled the Earth
  • Many stars
  • Phases of Venus
  • Sunspots

The Galilean moons of Jupiter are: Io, Europa, Ganymede and Callisto.

His most powerful telescope magnified by 33x, meaning everything he saw through it appeared 33x larger. The telescope also captured lots of light so objects through the telescope appeared brighter. He was able to see 10x as many stars than were visible to the naked eye. Brightness is the most important feature of a telescope, not the magnifying power but the brightness.

Galileo built a refractor style of telescope which used lenses, but the problem with this style is that objects appear fuzzy. This problem is called chromatic aberration. This problem was solved by Isaac Newton. Instead of a lens he used a curved mirror and this corrected the fuzziness caused by the lens. This style of telescope is called a Newtonian. All large contemporary telescopes have mirrors as the main optical component. Newton’s original mirror was 2.5 cm in diameter, today they reach 10 m in diameter.

Refractor telescope

refractor-telescope-illustration2

This type of telescope is better if it is longer, objects appear closer and with more detail. The function of the objective lens is to form an image close to the opposite end of the tube. The distance from the objective lens to the image is called the focal length. The longer the focal length the larger the image produced. The function of the eyepiece is to enable the eye of the observer to have a closer look at the image. It is like a small magnifying glass. The more powerful, the more the telescope will magnify. The magnification of a telescope is equal to the focal length of the objective divided by the focal length of the eyepiece. For amateurs 40 to 150 is standard.

Reflector telescope

reflector

A curved mirror replaces the objective lens. The primary mirror produces an image at its focal length and an eyepiece is used to examine that image. The observer looks into the side of the tube, thanks to the small secondary mirror. Most amateurs use reflecting telescopes. The larger the primary mirror the more light the telescope captured and the brighter the image through the eyepiece. Double the size of a telescope and the light collecting power increases by 4.

The diameter of a telescope matters more than magnification. About 15 cm is a good size to start with. A Newtonian is preferred as you can buy a larger telescope for the same price as a small refractor style telescope. A Newtonian will reveal nebulae that will not appear in the refractor for the same price.

Another type of reflecting telescope is the cassegrain, and they give a superior image to the Newtonian. They have a longer focal length and a completely enclosed tube.

tels-cassegrain.jpg

A good mount for your telescope is vital. A good mount is needed to help focus the lens and keep the telescope still. The example below is a Newtonian telescope on an equatorial mount.

tl_meade_lxd_goto

The mount has 2 axes of rotation and can be fitted with an automatic tracking device.

What can you see?

We are limited by the type of telescope we have and the atmosphere of the Earth. Light pollution is also a problem for city and town dwellers. It is best to take your telescope into the country to view many stars, Jupiter and Saturn. Depending on the size of the telescope, 20cm will ensure you can see the great red spot of Jupiter and the separation of the rings of Saturn. A 20cm reflector will also let you see Uranus, Neptune, but to see Pluto a 40cm instrument at least is required. With a 10cm reflector bright nebulae will be visible, but as wispy blue clouds.

The biggest radio telescope is currently being built in China at 500m in diameter. The next largest is the Aricebo in Puerto Rico and is 305m across.

Screen Shot 2016-06-04 at 2.44.23 PM

A radio telescope is like a giant ear listening for radio waves from space. Radio waves are a type of electromagnetic radiation similar to light. These signals are very weak, so the larger the telescope the more chance you have of picking up signals.

Screen Shot 2016-06-04 at 2.46.46 PM

 

This telescope will search for ancient signals of hydrogen, one of the building blocks of the early universe. It will also hunt for new stars, and in particular pulsars, rapidly rotating stars.

The dish is made from 4,500 triangular panels that have been carefully lowered into place. Each panel can be adjusted so the telescope can be moved to view different parts of the sky.

Read more about this amazing telescope here: http://www.bbc.co.uk/news/resources/idt-0192822d-14f1-432b-bd25-92eab6466362

The universe began with the big bang and astronomers are building more advanced machines to look further and further back into the past to see what the conditions were like when this happened. One of the main questions to answer is “What is the mean density of the universe?” This will determine how much gravity there is and the eventual fate of the universe. Will the universe keep expanding or will it eventually collapse?

Astronomers are slaves to light and we know that we can only observe about 10% of light from the universe. Or, actually that the universe only gives us 10% of its light. We can’t see dare energy and arm matter. It is thought that 68% of the universe is made from dark energy and 27% is dark matter. We know something is there because of the gravitational influence it has over nearby objects. Everything we know about the universe makes up about 5% of it.

More about dark energy and dark matter in another blog.

This was the final class and the whole course was amazing! Huge thanks go to Dr Paul Payne for his amazing lessons, 3D presentations and humour. Huge thanks also to everyone at Sydney Observatory for putting the course on. I will be back for more astronomy later in the year.

Here is a link to sign up for the next instalment of this course: https://maas.museum/event/astronomy-course-exploring-the-heavens/

Here is a link to Paul’s website: http://relativity.net.au/courses/

Exploring the Heavens – Week 4

The main focus for this week was ‘The Characteristics of Stars’. For this lass I was back to my usual Tuesday class time, and I had been looking forward to this session for quite some time.

The session started outside at the observatory waiting for the ISS to fly across the Sydney sky at 30,000 km/h. I had never seen this before so I was pretty excited to see a spaceship fly through the sky. It happened at 6.20pm and lasted for a couple of minutes. Incredible to think there are people inside the ISS doing science experiments at 30,000 km/h all day everyday.

iss

Then inside for another amazing 3D presentation by Dr Paul Payne about stars. Starting with the Sun, which produces an enormous amount of light and heat for billions of years. Stars are huge, 100,000 to 400,000 million kilometres across. The Sun is turbulent and the surface, photosphere, can have dark spots and bright patches that can flare up to 1,000x brighter.

Stars vary greatly in temperature, size and brightness. Stars do not burn, as this would not produce enough energy to keep them alive very long, they are nuclear power reactors where hydrogen is fusing to form helium and this processes keeps them alive for billions of years.

The most important property of a star is its mass as it determines everything about it – size, light, length of life. When a star dies it crushes itself to a fraction of its original size leaving behind either a white dwarf, neutron star or a black hole.

The formation of stars

Stars are formed from nebulae – an interstellar cloud of gas (mainly hydrogen and helium) and dust. The contracting ball of gas throws out rings of material to make planets and what was left is the central star. As the central star compressed it gets hotter and hotter and gravity keeps on compressing it even further. With a core temperature of about 10 million degrees atoms of hydrogen in the core move with such immense speeds that they collide and fuse together – called nuclear fusion. This reaction produces an enormous amount of energy and is a million times more efficient at generating energy that during the equivalent amount of coal.

Our Sun

Our Sun is stable and is currently fusing hydrogen at its core, a process that lasts for 90% of its life. Energy from the core radiates through the dense central layers and slowly makes its way to the surface in the form of x-rays and gamma rays. The journey could take a million years to happen. At the surface gas is not as dense so to expel the energy it uses a convection process. Gas below the surface moves in packets carrying heat energy. At the surface each packet radiates energy out into space, and we on Earth see this energy in the form of visible light.

The appearance of the Sun looks cellular, however, each cell is approx. 1000 km across. Small bright patches are where gas is radiating and darker veins are cooler areas where energy has fallen back into the Sun. The temperature of energy varies from 15 million degrees at the core to 5700 degrees at the photosphere. This is why the Sun looks yellow, because more yellow light is produced at this temperature than any other colour.

A sunspot is a region on the surface where the gas is cooler than its surroundings, approx. 4000 degrees cooler. The spot generates less light so appears darker. Galileo correctly recognised them and was able to measure the period of rotation of the Sun. The Sun does not rotate as a solid ball, each latitude rotates at a slightly different rate, for example the equator takes 27 days to rotate once and at a latitude of 40 degrees it takes 29 days.

656472main_solar-rotation_946-710

Solar eruptions are more frequent as the amount of sunspots increases. These eruptions are also called flares, where a small area may increase in intensity and temperatures of a million degrees may be generated so particles are exploded and hurled from the Sun that may even reach Earth and cause auroras visible near the poles.

The Life of the Sun

The Sun will fuse hydrogen for about 9 billion years. The leftover helium ash will build up the core. The Sun is stable during this time. It will eventually start running out of fuel at the core and it will prepare to die. It will take another billion years or so and its energy output will vary, called a variable star, where its brightness may vary.

The Death of the Sun

Eventually the core will collapse causing heat that will drive nuclear reaction faster resulting in the Sun swelling. It will grow to over 100x its present size and be 1000x brighter. The surface will cool and it will become a Red Giant. Finally the ignition of helium in the core, fusing to form carbon, nitrogen and oxygen, generating enormous power. It will glow with a brilliant red, something that happens to all stars prior to dying.

At this stage the star will produce heavier elements than helium up to iron. Elements heavier than iron when fused will not produce energy but absorb it, making the star very unstable. A planetary nebula is then produced, shells of gas are released cocooning itself in a cloud of its own material. They appear as faint blue discs surrounding dying stars. When the star tries to fuse iron the reaction absorbs energy from the core and the interior behaves more like a refrigerator than an oven. The core collapses, gravity compresses the star the size of the Sun to the size of Earth. It is extremely dense, a sugar cube sized peeve of its material would weigh 5 tonnes. The star is dead, it does not produce energy and it slowly cools off, it is now a white dwarf.

The power of stars

Stars are rated like light bulbs. Some stars produce 100,000x more power than our Sun. To measure the power we have to measure the brightness and how far away it is. If we know any two of power, brightness and distance we can find the third quantity.

Stars are hot!

The surface temperature of a star can be measured by its colour. Cool stars are red at 3000 degrees. Hot stars are blue at 15,000 degrees on the surface. We can see the colours of stars at night with the naked eye. We notice blue stars more as they generate more power. Examples are Sirius, Rigel. They are blue stars and are 8 and 815 light years away respectively. Examples of red stars, which do not last as long in the night sky, are Betelgeuse, Antares and Gamma Crucis.

Composition of stars

The composition of a star can be measured from the light from it. Telescopes equipped with a spectrometer can break the light into its different component features, called an absorption spectrum. Dark lines throughout the spectrum, like a barcode, reveal the elements, such as hydrogen and helium. The spectrum can also reveal the velocity as the lines will be red-shifted, meaning the star is moving away from us. The greater the velocity the greater the shift. If the star is moving towards us it will be blue-shifted. This shift in spectral lines is called the Doppler Effect.

An emission spectrum is produced by a glowing cloud of gas, like a nebula. Dark lines are now bright and the bright, rainbow continuous spectrum background is gone. Bright lines coincide with light lines and can measure all the properties listed for an absorption spectrum.

98A-pic-spectrum-types

A supernova is a very violent event in the universe when a massive star explodes. Elements heavier than iron are produced in the explosion. Gravity is the driving force behind the collapse of the core. The remnant is a compressed star smaller than a white dwarf, even 20 km across. A sugar cube sized piece can weigh 5,000,000 tonnes. This is known as a neutron star. It emits pulses of light, like a light house. Two beams of light are generated from the magnetic poles and as it rotates the beams are swept out into space. An example is the Crab Nebula Pulsar which flashes at 30x per second, meaning it rotates 30x per second.

Black Holes

A star with 3x the mass of our Sun can collapse to form a black hole. This is when the star pulls itself out of existence due to the amount of gravity it has. Nothing can escape a black hole, not even light. The star is reduced to a singularity into which all matter is pulled to. An envelope of space around it is called the event horizon, this is the point of no return. A typical size would be 10km. They are small and black so very hard to detect, we can only hope to detect their gravitational influence on objects around them. A famous black hole is in the binary system called Cygnus X1.

Cyg X-1 generic

Binary Stars

Most stars come in pairs. What appears as one point of light in the sky is actually the accumulation of two stars close together. These stars are in orbit around each other, this is called a binary system.

Next week… Telescopes.